
Acta Informatica 35, 401–420 (1998)

c© Springer-Verlag 1998

DNA computing, sticker systems, and universality?

Lila Kari 1, Gheorghe P̆aun2, Grzegorz Rozenberg3, Arto Salomaa4,
Sheng Yu1

1 Department of Computer Science, University of Western Ontario, London, Ontario,
Canada N6A 5B7
2 Institute of Mathematics of the Romanian Academy, P.O. Box 1 – 764, RO-70700 Bucures¸ti,
Romania
3 Department of Computer Science, Leiden University, P.O. Box 9512, 2300 RA Leiden,
The Netherlands
4 Academy of Finland and Turku University, Department of Mathematics, FIN-20500 Turku, Finland

Received: 10 October 1996 / 16 April 1997

Abstract. We introduce thesticker systems, a computability model, which is an
abstraction of the computations using the Watson-Crick complementarity as in
Adleman’s DNA computing experiment, [1]. Several types of sticker systems
are shown to characterize (modulo a weak coding) the regular languages, hence
the power of finite automata. One variant is proven to be equivalent to Turing
machines. Another one is found to have a strictly intermediate power.

1. Introduction

The sticker systemsintroduced here are language generating devices based on
the sticker operation, which, in turn, is a model of the techniques used by L.
Adleman in his successful experiment of computing a Hamiltonian path in a
graph by using DNA, [1]. We recall some details of the experiment in order to
see the roots of our models.

One knows that DNA sequences are in fact double stranded (helicoidal) struc-
tures composed of four nucleotides, A (adenine), C (cytosine), G (guanine), and
T (thymine), paired A–T, C–G according to the so-called Watson-Crick com-
plementarity. If we have a single stranded sequence of A, C, G, T nucleotides,
together with a single stranded sequence composed of the complementary nu-
cleotides, the two sequences will be “glued” together (by hydrogen bonds), form-
ing a double stranded DNA sequence. Figure 1 illustrates this operation.

Using this biochemical reaction, Adleman has proceeded as follows, in
searching Hamiltonian paths in a graph:

? Research supported by the Academy of Finland, project 11281, the Spanish Secretaria de Es-
tado de Universidades e Investigacion, SAB95-0357, and by the National Sciences and Engineering
Research Council of Canada, Grant OGP0041630

402 L. Kari et al.

5′–AAACTGGAG–3′ + 3′–TTTGACCTC–5′

AAACTGGAG

TTTGACCTC

@@
��

Fig. 1.

– codify the nodes by single stranded DNA sequences of length 20 and put all
these strings in a test tube,

– if the nodei is codified by the stringxi and the nodej is codified by the
string xj , and there is an arrow from nodei to nodej in the graph, then add
to the test tube a single stranded DNA sequenceyij such that ifxi = x′

i x′′
i ,

xj = x′
j x′′

j , each ofx′
i , x′′

i , x′
j , x′′

j being strings of length 10, thenyij = y′
ij y′′

ij ,
wherey′

ij is the Watson-Crick complement ofx′′
i andy′′

ij is the Watson-Crick
complement ofx′

j .

Due to the complementarity, the stringyij will match the corresponding parts of
xi and xj , linking them and producing in this way a sequence of length 40, as
illustrated by Fig. 2.

y′
ij y′′

ij

x′
j x′′

jx′′
ix′

i

Fig. 2.

This “domino game” can continue, identifying longer and longer paths in
the considered graph. By a filtering procedure which is not of interest here, one
then can check whether or not paths with specified properties exist (for instance,
Hamiltonian paths).

We extract from this experiment only the basic ingredient: the operation of
prolonging to the right a sequence of (single or double) symbols by using given
single stranded strings, matching them with portions of the current sequence
according to a complementarity relation.

The formal model of this operation is thesticker operationdefined in the
following section.

This operation can be used in building a generative/computing device: start
from a given set of incomplete double stranded sequences (axioms), plus two
sets of single stranded complementary sequences. Iterating the right prolongation
using elements of these latter sets, we get “computations” of possibly arbitrary

DNA computing, sticker systems, and universality 403

length. Stop when a complete double stranded sequence is obtained, that is when
no “sticky end” still exists. We obtain in this way a language.

The generative power of several variants of such mechanisms is investigated
here. The unrestricted case corresponds to the Adleman experiment and it is
proved to characterize – modulo a weak coding – the regular languages. When
an additional restriction is imposed, namely to use the same sequence of com-
plementary strings from the two initial sets, then, rather surprisingly, we get a
characterization of recursively enumerable languages. Whether or not such a re-
striction can be implemented in the DNA framework is a practical problem which
we cannot answer, but providing that it can be done, computationally universal
DNA “computers” could be designed just using the Watson-Crick complemen-
tarity, plus the techniques required in the mentioned restriction.

This reminds us the results obtained in a series of papers (see references in
[10], [13], [16]) about the possibility of designing universal (and programmable)
DNA “computers” based on the operation ofsplicing, introduced in [9] as a
model of the recombinant behavior of DNA under the influence of restriction
enzymes and ligases.

2. The sticker operation

Let V be an alphabet (a finite set of abstract symbols) endowed with a symmetric
relation ρ (of complementarity), ρ ⊆ V × V . Let # be a special symbol not in
V , denoting an empty space (theblank symbol).

Using the elements ofV ∪ {#} we construct thecompositesymbols of the
following sets: (

V
V

)
ρ

=
{(a

b

)
| a, b ∈ V , (a, b) ∈ ρ

}
,

(
#
V

)
=

{(
#
a

)
| a ∈ V

}
,(

V
#

)
=
{(a

#

)
| a ∈ V

}
.

We denote

Wρ(V) =

(
V
V

)∗

ρ

S(V),

where

S(V) =

(
#
V

)∗
∪
(

V
#

)∗
,

and we call the elements of this setwell-started sequences(in general,X∗ is the
set of all strings, including the empty one denoted byλ, composed of elements
of X, andX+ is the setX∗ −{λ}). Stated otherwise, the elements ofWρ(V) start
with pairs of symbols inV , as selected by the complementarity relation, and end

404 L. Kari et al.

either by a suffix consisting of pairs

(
#
a

)
or with a suffix consisting of pairs(

b
#

)
, for a, b ∈ V (the symbols

(
#
a

)
,

(
b
#

)
are not mixed).

The sticker operation, denoted byµ, is a partially defined mapping from
Wρ(V) × S(V) to Wρ(V), defined as follows. Forx ∈ Wρ(V), y ∈ S(V), z ∈
Wρ(V), we write

µ(x, y) = z

if and only if one of the following cases holds:

1. x =

(
a1

b1

)
. . .

(
ak

bk

)(ak+1

#

)
. . .
(ak+r

#

)(ak+r +1

#

)
. . .
(ak+r +p

#

)
,

y =

(
#
c1

)
. . .

(
#
cr

)
,

z =

(
a1

b1

)
. . .

(
ak

bk

)(
ak+1

c1

)
. . .

(
ak+r

cr

)(ak+r +1

#

)
. . .
(ak+r +p

#

)
,

for k ≥ 0, r ≥ 1, p ≥ 1,

ai ∈ V , 1 ≤ i ≤ k + r + p, bi ∈ V , 1 ≤ i ≤ k, ci ∈ V , 1 ≤ i ≤ r ,

and (ak+i , ci) ∈ ρ, 1 ≤ i ≤ r ;

2. x =

(
a1

b1

)
. . .

(
ak

bk

)(ak+1

#

)
. . .
(ak+r

#

)
,

y =

(
#
c1

)
. . .

(
#
cr

)(
#

cr +1

)
. . .

(
#

cr +p

)
,

z =

(
a1

b1

)
. . .

(
ak

bk

)(
ak+1

c1

)
. . .

(
ak+r

cr

)(
#

cr +1

)
. . .

(
#

cr +p

)
,

for k ≥ 0, r ≥ 0, p ≥ 0, r + p ≥ 1,

ai ∈ V , 1 ≤ i ≤ k + r , bi ∈ V , 1 ≤ i ≤ k, ci ∈ V , 1 ≤ i ≤ r + p,

and (ak+i , ci) ∈ ρ, 1 ≤ i ≤ r ;

3. x =

(
a1

b1

)
. . .

(
ak

bk

)(
#

bk+1

)
. . .

(
#

bk+r

)(
#

bk+r +1

)
. . .

(
#

bk+r +p

)
,

y =
(c1

#

)
. . .
(cr

#

)
,

z =

(
a1

b1

)
. . .

(
ak

bk

)(
c1

bk+1

)
. . .

(
ck+r

bk+r

)(
#

bk+r +1

)
. . .

(
#

bk+r +p

)
,

for k ≥ 0, r ≥ 1, p ≥ 1,

ai ∈ V , 1 ≤ i ≤ k, bi ∈ V , 1 ≤ i ≤ k + r + p, ci ∈ V , 1 ≤ i ≤ r ,

and (ci , bk+i) ∈ ρ, 1 ≤ i ≤ r ;

4. x =

(
a1

b1

)
. . .

(
ak

bk

)(
#

bk+1

)
. . .

(
#

bk+r

)
,

DNA computing, sticker systems, and universality 405

y =
(c1

#

)
. . .
(cr

#

)(cr +1

#

)
. . .
(cr +p

#

)
,

z =

(
a1

b1

)
. . .

(
ak

bk

)(
c1

bk+1

)
. . .

(
cr

bk+r

)(cr +1

#

)
. . .
(cr +p

#

)
,

for k ≥ 0, r ≥ 0, p ≥ 0, r + p ≥ 1,

ai ∈ V , 1 ≤ i ≤ k, bi ∈ V , 1 ≤ i ≤ k + r , ci ∈ V , 1 ≤ i ≤ r + p,

and (ci , bk+i) ∈ ρ, 1 ≤ i ≤ r .

In case 1 we add complementary symbols on the lower level without com-
pleting all the blank spaces. In case 2 we complete the blank spaces on the lower

level of x and possibly add more composite symbols of the form

(
#
c

)
. Cases 3

and 4 are symmetric to cases 1 and 2, respectively, completing blank spaces on
the upper level of the string.

Figure 3 picturally illustrates these cases.

x

x

x

x

y
y

y

y

Case 1:

Case 2:

Case 3:

Case 4:

Fig. 3.

Note that in all cases the stringy must contain at least one composite symbol
and that cases 2 and 4 allow the prolongation of “blunt” strings inWρ(V): when
r = 0, there is no blank position inx.

Of course, for stringsx, y which do not satisfy any of the previous conditions,
µ(x, y) is not defined.

3. Sticker systems

Using the sticker operation we can define a generating/computing mechanism as
follows:

A sticker systemis a construct

406 L. Kari et al.

γ = (V , ρ, A, Bd, Bu),

whereV is an alphabet,ρ ⊆ V × V is a symmetric relation onV , A is a finite

subset ofWρ(V) (of axioms), andBd and Bu are finite subsets of

(
#
V

)+

and(
V
#

)+

, respectively.

The idea behind such a machinery is the following. We start with the se-
quences inA and we prolong them to the right with the strings inBd, Bu ac-
cording to the sticker operations (the elements ofBd are used on the lower row,
down, and those ofBu are used on theupper row). When no blank symbol is

present, we obtain a string over the alphabet

(
V
V

)
ρ

. The language of all such

strings is the language generated byγ.
Formally, we define this language as follows.
For two stringsx, z ∈ Wρ(V) we write

x =⇒ z iff z = µ(x, y) for somey ∈ Bd ∪ Bu.

We denote by =⇒∗ the reflexive and transitive closure of the relation =⇒.
A sequencex1 =⇒ x2 =⇒ . . . =⇒ xk , x1 ∈ A, is called acomputationin γ

(of lengthk − 1). A computation as above iscompleteif xk ∈
(

V
V

)∗

ρ

(no blank

symbol is present in the last string of composite symbols).
The language generated byγ, denoted byL(γ), is defined by

L(γ) = {w ∈
(

V
V

)∗

ρ

| x =⇒∗ w, x ∈ A}.

Therefore, only the complete computations are taken into account when defin-
ing L(γ). Note that a complete computation can be continued since we allow
prolongations starting from blunt sequences.

One sees the close resemblance with the operations used in the Adleman
experiment:Bd corresponds to the codes of graph nodes,Bu corresponds to the
complementary strings identifying the arrows in the graph (or conversely). The
fact that we use here also a given set of axioms (and, in several results, a weak
coding is applied to the language of words of composite symbols generated by
our devices) adds flexibility to the model and makes it more similar to usual
generating mechanisms investigated in formal language theory.

A complete computationx1 =⇒ x2 =⇒ . . . =⇒ xk , x1 ∈ A, xk ∈
(

V
V

)∗

ρ

, with

respect toγ, is said to be:

– primitive if no properly initial part of it is complete;
– balancedif in each stepxi =⇒ xi +1 one uses a sticker operation corresponding

to cases 2 or 4 in Sect. 2. Moreover, cases 2 and 4 alternate from a step to
the next one.

DNA computing, sticker systems, and universality 407

Thus, in a primitive computation we do not use sticker operations as in cases
1 – 4 with p = 0, except in the last step. In a balanced computation we allow
p = 0, but from a step to the next one we have to change the setBd, Bu from
which we take the string to be used.

Let us denote byLp(γ), Lb(γ), Lpb(γ) the languages of the stringsw ∈
(

V
V

)∗

ρ

obtained by a complete computation ofγ that is primitive, balanced, both prim-
itive and balanced, respectively.

Assume now that the strings in the setsBd, Bu are labelled in a one-to-
one manner by natural numbers from 1 to card(Bα), α ∈ {d, u}; denote by
eα : Bα −→ {1, . . . , card(Bα)}, α ∈ {d, u}, the labellings. For a computation

D : x1 =⇒ x2 =⇒ . . . =⇒ xk , x1 ∈ A, xk ∈
(

V
V

)∗

ρ

,

and for 1≤ j ≤ k − 1, we denote

eα(xj =⇒ xj +1) =

{
eα(y), if xj +1 = µ(xj , y), y ∈ Bα,
λ, otherwise,

and we define

eα(D) = eα(x1 =⇒ x2)eα(x2 =⇒ x3) . . . eα(xk−1 =⇒ xk),

for α ∈ {d, u}. We say thated(D) is the d-control word andeu(D) is the u-control
word associated withD .

A computation D such that ed(D) = eu(D) is called coherent. When
|ed(D)| = |eu(D)| (where |x| is the length of the stringx) we say thatD is
a fair computation.

We denote byLc(γ) and Lf (γ) the languages of the strings in

(
V
V

)∗

ρ

that

are obtained by a coherent complete computation and, respectively, by a fair
complete computation inγ. Clearly, each coherent computation is also fair.

By the definition,Lα(γ) ⊆ L(γ), for all α ∈ {p, b, pb, c, f }.
We denote bySL, PSL, BSL, PBSL, CSL, FSLthe families of languages of

the form L(γ), Lp(γ), Lb(γ), Lpb(γ), Lc(γ), Lf (γ), respectively, defined as above.
(By REG andRE we denote the families of regular and recursively enumerable
languages, respectively.)

In the following sections we will investigate these six families of languages
generated by sticker systems. We would also like to investigate coherent prim-
itive, coherent balanced, coherent primitive and balanced languages, as well as
fair primitive, fair balanced languages etc. (Note that a balanced computation is
not necessarily a fair one, because it can start and stop in the same setBd, Bu).
But we will not consider them in this paper.

408 L. Kari et al.

4. Characterizing the regular languages

We now begin our investigations concerning the generative capacity of sticker
systems. We will first show in this section that many of the basic variants yield
only regular languages. Then we show that each regular language can be rep-
resented as a weak coding of a language generated by a sticker system of one
of these basic types. (Aweak codingis a morphismh : V ∗

1 −→ V ∗
2 such that

h(a) ∈ V2 ∪ {λ} for all a ∈ V1. If h(a) ∈ V2 for all a ∈ V1, thenh is called a
coding.)

Lemma 1. SL⊆ REG.

Proof. Let γ = (V , ρ, A, Bd, Bu) be a sticker system. We denote

d = max{|x| | x ∈ A ∪ Bd ∪ Bu}.

We construct the right-linear grammarG = (N , T, S, P) with

N = {
[(a1

#

)
. . .
(ak

#

)]
,

[(
#
a1

)
. . .

(
#
ak

)]
| ai ∈ V ,

1 ≤ i ≤ k, 1 ≤ k ≤ d}
∪ {S, X},

T =

(
V
V

)
ρ

,

andP contains the following rules:

1.1) S →
(

a1

b1

)
. . .

(
an

bn

)[(an+1

#

)
. . .
(an+k

#

)]
,

for

(
a1

b1

)
. . .

(
an

bn

)(an+1

#

)
. . .
(an+k

#

)
∈ A,

1.2) S →
(

a1

b1

)
. . .

(
an

bn

)[(
#

bn+1

)
. . .

(
#

bn+k

)]
,

for

(
a1

b1

)
. . .

(
an

bn

)(
#

bn+1

)
. . .

(
#

bn+k

)
∈ A,

1.3) S →
(

a1

b1

)
. . .

(
an

bn

)
X,

for

(
a1

b1

)
. . .

(
an

bn

)
∈ A.

In all cases,ai , bi ∈ V , 1 ≤ i ≤ n + k, andk ≥ 1, n ≥ 0.

2.1)
[(a1

#

)
. . .
(an

#

)]
→
(

a1

b1

)
. . .

(
am

bm

)[(am+1

#

)
. . .
(an

#

)]
,

for

(
#
b1

)
. . .

(
#

bm

)
∈ Bd with m < n,

2.2)
[(a1

#

)
. . .
(an

#

)]
→
(

a1

b1

)
. . .

(
an

bn

)
X,

for

(
#
b1

)
. . .

(
#
bn

)
∈ Bd,

DNA computing, sticker systems, and universality 409

2.3)
[(a1

#

)
. . .
(an

#

)]
→
(

a1

b1

)
. . .

(
an

bn

)[(
#

bn+1

)
. . .

(
#

bm

)]
,

for

(
#
b1

)
. . .

(
#

bm

)
∈ Bd with m > n.

(We prolong the current terminal string of symbols
(a

b

)
∈
(

V
V

)
ρ

to the

right, using an element ofBd.)

3.1)

[(
#
b1

)
. . .

(
#
bn

)]
→
(

a1

b1

)
. . .

(
am

bm

)[(
#

bm+1

)
. . .

(
#
bn

)]
,

for
(a1

#

)
. . .
(am

#

)
∈ Bu with m < n,

3.2)

[(
#
b1

)
. . .

(
#
bn

)]
→
(

a1

b1

)
. . .

(
an

bn

)
X,

for
(a1

#

)
. . .
(an

#

)
∈ Bu,

3.3)

[(
#
b1

)
. . .

(
#
bn

)]
→
(

a1

b1

)
. . .

(
an

bn

)[(an+1

#

)
. . .
(am

#

)]
,

for
(a1

#

)
. . .
(am

#

)
∈ Bu with m > n.

(We prolong the current terminal string of symbols
(a

b

)
∈
(

V
V

)
ρ

to the

right, using an element ofBu.)

In all rules of types 2.i), 3.i), i = 1, 2, 3, the symbols
[(a1

#

)
. . .
(an

#

)]
[(

#
b1

)
. . .

(
#
bn

)]
, respectively, are arbitrary symbols inN .

4.1) X →
[(a1

#

)
. . .
(an

#

)]
, for

(a1

#

)
. . .
(an

#

)
∈ Bu, n ≥ 1,

4.2) X →
[(

#
b1

)
. . .

(
#
bn

)]
, for

(
#
b1

)
. . .

(
#
bn

)
∈ Bd, n ≥ 1.

(A complete computation can be continued using these rules.)

5) X → λ.

It is easy to see thatL(G) = L(γ): at every step we can use an element ofBd

or an element ofBu such that the current sticky end is shorter thand. Therefore,
the terminals inN can control the process in the same way as the sticky ends.
We conclude thatL(γ) is a regular language. �

Lemma 2. PSL⊆ REG.

Proof. Starting from a sticker systemγ, we construct a right-linear grammar
G′ as in the previous proof, but without using the nonterminal symbolX (this
means that the rules of types 1.3), 2.2), and 3.2) become terminal rules, and the
rules of types 4.1), 4.2), and 5) are no longer used). In this way, no complete
computation inγ can be continued by the corresponding derivation inG, that is
L(G) = Lp(γ). Consequently,Lp(γ) ∈ REG. �

410 L. Kari et al.

Lemma 3. BSL⊆ REG.

Proof. We proceed as in the proof of Lemma 1, but instead of using one symbol
X we consider two nonterminalsXu, Xd. Then we introduce rules of type 1.3)
with both Xu and Xd instead ofX, in rules of type 2.2) we replaceX with Xd,
in rules of type 3.2) we replaceX with Xu, in rules of type 4.1) we replaceX
with Xu, and in rules of type 4.2) we replaceX with Xd; moreover, the rules of
types 2.1) and 3.1) are removed; finally, instead ofX → λ we introduce both
rulesXd → λ andXu → λ.

In this way, only balanced computations inγ are simulated in the obtained
grammar. Denoting this grammar byG′′, we obtainL(G′′) = Lb(γ). Therefore,
Lb(γ) ∈ REG. �

Combining the ideas of the proofs of Lemmas 2 and 3 we get:

Lemma 4. PBSL⊆ REG.

Modulo a weak coding, the opposite inclusions are also true.

Lemma 5. Every regular language can be represented as a weak coding of a
language in SL∩ PSL∩ BSL∩ PBSL.

Proof. Consider a regular grammarG = (N , T, S, P), assume itλ-free (at most
the λ-rule S → λ is present and thenS does not appear in the right hand side
of the rules), and construct the sticker system

γ = (V , ρ, A, Bd, Bu),

with

V = {[X, a] i | X ∈ N , a ∈ T, i = 1, 2}
∪ {(X, a)i | X ∈ N , a ∈ T, i = 1, 2}
∪ {[Z , ·], (Z , ·)}, whereZ is a new symbol,

ρ = {([X, a] i , (X, a)i) | X ∈ N , a ∈ T, i = 1, 2}
∪ {([Z , ·], (Z , ·))},

A =

{(
[S, a]1

#

)
| S → aX ∈ P, a ∈ T, X ∈ N

}

∪
{(

[S, a]1

(S, a)1

)
| S → a ∈ P, a ∈ T

}
∪ {λ | S → λ ∈ P},

Bd =

{(
#

(X, a)1

)(
#

(Y , b)2

)
| X → aY ∈ P, and Y → bY′ ∈ P

or Y → b ∈ P, X, Y , Y ′ ∈ N , a, b ∈ T}
∪

{(
#

(X, a)1

)(
#

(Z , ·)
)

| X → a ∈ P, a ∈ T

}

∪
{(

#
(Z , ·)

)(
#

(Z , ·)
)}

,

DNA computing, sticker systems, and universality 411

Bu =

{(
[X, a]2

#

)(
[Y , b]1

#

)
| X → aY ∈ P, and Y → bY′ ∈ P

or Y → b ∈ P, X, Y , Y ′ ∈ N , a, b ∈ T}
∪

{(
[X, a]2

#

)(
[Z , ·]

#

)
| X → a ∈ P, a ∈ T

}

∪
{(

[Z , ·]
#

)}
.

Every computation has to start by using a string inBd, it continues by alternately
using elements ofBd and Bu, and can be completed only by using the string(

[Z , ·]
#

)
in Bu. A complete computation cannot continue further by using strings

that contain symbols other than [Z , ·] or (Z , ·), because the relationρ allows only
the matching of symbols [X, a] i , (X, a)j with i = j .

Consider now the weak codingg :

(
V
V

)∗

ρ

−→ T∗ defined by

g(

(
[X, a] i

(X, a)i

)
) = a, for X ∈ N , a ∈ T, i = 1, 2,

g(

(
[Z , ·]
(Z , ·)

)
) = λ.

From the construction ofγ and the definition ofg one can easily see that
L(G) = g(L(γ)) = g(Lα(G)), for all α ∈ {p, b, pb, f }. �

For the case of primitive computations, the proof above can be modified in
such a way to haveL(G) equal to a coding ofLp(γ): if we remove all occurrences

of symbols

(
#

(Z , ·)
)

,

(
[Z , ·]

#

)
, then the computation stops when completing an

element of

(
V
V

)∗

ρ

. A computation simulating a derivation inG is also balanced,

hence a coding also suffices for the case of primitive and balanced computations.

In the non-primitive case we cannot avoid using symbols

(
#

(Z , ·)
)

,

(
[Z , ·]

#

)
(hence we cannot avoid using a weak coding in the statement of Lemma 5),
because otherwise we can continue a computation corresponding to a derivation

in G by adding further symbols

(
[X, a] i

(X, a)i

)
, i = 1, 2; such symbols cannot be

removed even if we then use a weak coding.

For a familyF of languages, we denote bywcode(F) the family of languages
of the formg(L), for L ∈ F andg a weak coding.

Theorem 1. REG = wcode(SL) = wcode(PSL) = wcode(BSL) = wcode(PBSL).

Proof.The familyREG is closed under arbitrary morphisms, hence from Lemmas
1, 2, 3, 4 we obtainwcode(F) ⊆ REG, for F ∈ {SL, PSL, BSL, BPSL}. Lemma
5 proves the opposite inclusions. �

412 L. Kari et al.

Thus, the Adleman way of computing cannot transgress the power of finite
automata.

5. Characterizing the recursively enumerable languages

We are now ready to give our main result: the familyCSL is computationally
universal, in the sense thatwcde(CSL) = RE. Our proof consists of two steps,
one being a modification of the classical proof of the characterization of recur-
sively enumerable languages by means of equality sets and, the other, a specific
construction with sticker systems. The essence of our proof can be described as
follows. The notion of coherence comes very close to the idea of the twin-shuffle
languages [19]. Hence, the generative capacity of the latter can be carried over
to sticker systems. We now begin the details.

From the definitions, it is clear that all languages generated by sticker sys-
tems are context-sensitive. Moreover, from the Turing-Church thesis we have the
following lemma:

Lemma 6. wcode(CSL) ⊆ RE.

In view of the fact that, at the first sight, the operation of prolongation to the
right based on matching symbols related by a complementarity relation does not
look very powerful, the following result is rather surprising.

Lemma 7. Every recursively enumerable language can be represented as a weak
coding of a language in the family CSL.

Our proof of this lemma is based on the following representation of an arbi-
trary recursively enumerable languageL ⊆ T∗:

L = hT (h1(E(h1, h2)) ∩ R). (1)

whereh1 and h2 are two morphisms,R is a regular language,E(h1, h2) is the
equality set ofh1 andh2, andhT is a special projective morphism defined by

hT (a) =

{
a, if a ∈ T;
λ, if a 6∈ T.

A representation which is very similar to the above has been shown in [18], [19]:

L = hT (E(h1, h2) ∩ R). (2)

The difference between (1) and (2) is that (1) uses theh1 image of the equality
set ofh1 andh2, i.e., h1(E(h1, h2)) (= h2(E(h1, h2))), but (2) uses the equality set
itself, i.e.,E(h1, h2). Unfortunately, we have found neither a proof for (1) in the
literature nor a way to derive (1) from (2) directly. We give a proof for (1) in the
following, which is a modification of the proof for (2) in [19] (Theorem 6.9).

Lemma 8. For each recursively enumerable language L⊆ T∗, there exist twoλ-
free morphisms h1, h2 : Σ∗

2 → Σ∗
1 , a regular language R⊆ Σ∗

1 , and a projection
hT : Σ∗

1 → T∗ such that

DNA computing, sticker systems, and universality 413

L = hT (h1(E(h1, h2)) ∩ R). (3)

Proof. Let L be an arbitrary recursively enumerable language generated by a
phrase-structure grammarG = (N , T, P, S), whereN andT are the finite sets of
nonterminals and terminals, respectively,P is the finite set of productions:

pi : αi → βi , i = 1, . . . , n,

and S ∈ N is the starting nonterminal. Without loss of generality, we assume
that for each productionpi : αi → βi , βi /= λ, except for the productionS → λ
if λ ∈ L.

Define T ′ = {a′ | a ∈ T}, T ′′ = {a′′ | a ∈ T}, and P′ = {p′ | p ∈ P}.
Denote byV and V1 the setsN ∪ T and N ∪ T ′, respectively. For notational
purpose, we also define a morphismd : V ∗ → V ∗

1 by d(A) = A for A ∈ N and
d(a) = a′ for a ∈ T. Note thatd is a bijection; thus, the inverse ofd, d−1, is
well defined.

Let

Σ1 = V ∪ T ′ ∪ {B, F , $}, (4)

Σ2 = Σ1 ∪ T ′′ ∪ P ∪ P′, (5)

whereB, F , and $ are not inV , V1, or V2. The morphismsh1, h2 : Σ∗
2 → Σ∗

1 ,
depending onG, are defined by the following:

(i) h1(B) = BS$, h2(B) = B,
(ii) h1($) = $, h2($) = $,

(iii) h1(pi) = d(βi), h2(pi) = d(αi), for pi : αi → βi ∈ P,
(i v) h1(p′

i) = βi , h2(p′
i) = d(αi), for pi : αi → βi ∈ P,

(v) h1(A) = A, h2(A) = A, for A ∈ N ,
(vi) h1(a′) = a′, h2(a′) = a′, for a′ ∈ T ′,

(vii) h1(a′′) = a, h2(a′′) = a′, for a′′ ∈ T ′′,
(viii) h1(a) = F , h2(a) = a, for a ∈ T,

(ix) h1($′) = F , h2($′) = $,
(x) h1(F) = F , h2(F) = FF .

The regular languageR is defined by the regular expression

BS($V ∗
1)∗$T∗F +.

Note thatαi , βi /= λ for all i above. So, bothh1 andh2 areλ-free morphisms.
If λ ∈ L, then we introduce an additional symbol @ toΣ2 and define

h1(@) = h2(@) = BS$F .

It is easy to see that by definingh1(@) andh2(@), we will not introduce any
other new words toh1(E(h1, h2)) ∩ R. Therefore, we assume thatλ 6∈ L in the
following arguments.

414 L. Kari et al.

We definehT : Σ∗
1 → T by

hT (a) =

{
a, if a ∈ T;
λ, if a 6∈ T.

Now we show that the equation (3) holds.
Our proof for thatx ∈ L implies x ∈ hT (h1(E(h1, h2)) ∩ R) is similar to the

one for Theorem 6.9 of [19]. So, we omit the formal proof. Instead, we use an
example to explain our idea informally. The example is a modified version of
the one from [19] (page 112).

Let L be generated by the following phrase-structure grammarG:

p1 : S → ACCC, p2 : CC → CD, p3 : AC → a,
p4 : DC → ACC, p5 : ACC → C , p6 : C → b.

A derivation sequence for the wordab is

S =⇒ ACCC =⇒ ACDC =⇒ aDC =⇒ aACC =⇒ aC =⇒ ab. (6)

According to this derivation sequence, we define

x = Bp1$Ap2C$p3DC$a′p4$a′p5C$a′′p′
6$′abFFF.

By the above definitions ofh1 andh2, we have

h1(x) = h2(x) = BS$ACCC$ACDC$a′DC$a′ACC$a′C$abFFFFFF.

Then, clearly,x ∈ E(h1, h2), h1(x) ∈ R, and hT (h1(x)) = ab. Thus, ab ∈
hT (h1(E(h1, h2)) ∩ R).

Conversely, letw ∈ hT (h1(E(h1, h2)) ∩ R), i.e., w = hT (y) for somey ∈
h1(E(h1, h2)) ∩ R. Then by the definition ofR, y is in the form

BS$y1$y2$. . . $yt F
l ,

where y1, . . . , yt−1 ∈ V ∗
1 , yt ∈ T∗, and l > 0. Let y = h1(x) for somex ∈

E(h1, h2). Then
x = Bx1$x2$. . . $xt $

′xt+1F m

such thath2(x1) = S, h1(xi) = h2(xi +1) = yi , for 1 ≤ i ≤ t , and l = 2m
and h1(xt+1) = F m−1. Note that if xj = xj +1 for some j , 1 ≤ j < t , then we
can construct a new wordx′ by deletingxj $ from x so thathT (h1(x′) ∩ R) =
hT (h1(x) ∩ R) = w. So, without loss of generality, we assume thatxj /= xj +1 for
all j , 1 ≤ j < t . (It is clear thatxt /= xt+1). Then the following are clear:

(1) x1 = p (or x1 = p′ if t = 1) for somep : S → γ in P,
(2) xi ∈ (V1 ∪ P)∗P(V1 ∪ P)∗, for 2 ≤ i < t ,
(3) xt ∈ (V2 ∪ P′)∗,
(4) xt+1 ∈ T∗,
(5) h1(xi) = yi andh2(xi) = yi −1, for 1 ≤ i ≤ t (letting y0 = S).

DNA computing, sticker systems, and universality 415

By (2) and (5) above and (iii) of the definition ofh1 andh2, it follows that

d−1(yi −1) ⇒+
G d−1(yi),

2 ≤ i ≤ t − 1. Note also thatS ⇒G d−1(y1) and d−1(yt−1) ⇒+
G yt . Therefore,

we haveS ⇒+
G yt , i.e., yt ∈ L. Sincew = hT (y) = yt , we have proved that

w ∈ L. �

Proof of Lemma 7. Let L ⊆ T∗ be an arbitrary recursively enumerable language.
By Lemma 8,L = hT (h1(E(h1, h2)) ∩ R) for someλ-free morphismsh1, h2 :
Σ∗

2 → Σ∗
1 , regular languageR ⊆ Σ∗

1 , and projectionhT : Σ∗
1 → T∗ defined by

hT (X) =

{
X, if X ∈ T,
λ, otherwise,

Let Σ2 = {b0, b1, . . . , bn−1}, for some integern > 0, and R be ac-
cepted by a deterministic finite automatonM = (Q, Σ1, δ, q1, F), where Q =
{q0, q1, . . . , qm−1}, for somem > 0. We construct the sticker system

γ = (V , ρ, A, Bd, Bu)

where

V = Σ1 ∪ Q ∪ {[q, j] | q ∈ Q, 0 ≤ j ≤ m − 1},
ρ = {(X, X) | X ∈ Σ1}∪{(q, q), ([q, j], q), (q, [q, k]), ([q, j], [q, k]) | q ∈ Q,

0 ≤ j , k ≤ m − 1},

A =
{(q0

#

)}
,

Bd =

{(
#

[qi0, j]

)(
#
a1

)(
#

qi1

)(
#

qi1

)(
#
a2

)(
#

qi2

)(
#

qi2

)
. . .(

#
qiti −1

)(
#

qiti −1

)(
#
ati

)(
#

qiti

)∣∣∣∣∣
a1a2 . . . ati = h2(bi), bi ∈ Σ2, 0 ≤ j ≤ m − 1,

δ(qik , ak+1) = qik+1, 0 ≤ k < ti }
⋃{(

#
qi

)(
#
qi

)∣∣∣∣ qi ∈ F

}
,

Bu =

{(a1

#

)([qi1, j]
#

)(qi1

#

)(a2

#

)(qi2

#

)(qi2

#

)
. . .(ati

#

)(qiti
#

)(qiti
#

)∣∣∣
a1a2 . . . ati = h1(bi), bi ∈ Σ2, 0 ≤ j ≤ m − 1,

δ(qik , ak+1) = qik+1, 1 ≤ k < ti }
⋃{(qi

#

)∣∣∣ qi ∈ F
}

.

Note that each string ofBd or Bu contains an integerj , 0 ≤ j < m, which is
paired with the state that appears first (from the left) in the string. The function
of this integer will become clear later.

416 L. Kari et al.

Denote byrd(i , j , k), 0 ≤ i < n and 0≤ j , k < m, a string inBd which is
constructed with the wordh2(bi) and the stateqj as the first state that is paired
with the integerk. Similarly, denote byru(i , j , k) a string inBu.

Assume thatF containsl > 0 states and

F = {f0, f1, . . . , fl −1}, l ≤ m.

Then we denote byrd(n, 0, j) the string

(
#
fj

)(
#
fj

)
and byru(n, j , 0) the string(

fj
#

)
.

It is clear thatcard(Bd) = card(Bu) = nm2 + l . Define the labelling mappings
ed : Bd → {1, . . . , card(Bd)} by

ed(rd(i , j , k)) = i · m2 + j · m + k + 1

andeu : Bu → {1, . . . , card(Bu)} by

eu(ru(i , j , k)) = i · m2 + k · m + j + 1.

Let u denote a string inA. By the above construction ofγ, it is clear that
u =⇒∗

γ z if and only if there is a sequence

qi0a1qi1a2 . . . qit−1at qit

such that (1)qi0 = q0, qit ∈ F , and δ(qik−1, ak) = qik ; and (2) there isx ∈ Σ∗
2

such thath1(x) = h2(x) = a1a2 . . . at .

Consider also the weak codingg :

(
V
V

)∗

ρ

−→ T∗ defined by

g(

(
α

β

)
) =

{
a, if α = β = a, a ∈ T,
λ, otherwise.

We show thatg(Lc(γ)) = hT (h1(E(h1, h2)) ∩ R) in the following.
Let w ∈ hT (h1(E(h1, h2)) ∩ R). Then there existx = bi1bi2 . . . bis ∈ E(h1, h2)

and y = h1(x) = h2(x) such thaty ∈ R and w = hT (y). Let y = a1a2 . . . at .
Then we have a state sequenceqj1, qj2, . . . , qjt+1 of M such thatqj1 = q0, qjt+1 =
fr ∈ F for somer , 0 ≤ r < l , and δ(qjk , ak) = qjk+1 for 1 ≤ k ≤ t . Note that
h1(x) = h1(bi1) . . . h1(bis) = a1 . . . at . Let h1(bik) = aαk . . . aαk+1−1, 1 ≤ k < s,
and h1(bis) = aαs . . . at . Similarly, let h2(bik) = aβk . . . aβk+1−1, 1 ≤ k < s, and
h2(bis) = aβs . . . at . Then, there exists a computationD such thatD uses the
following strings fromBd:

rd(i1, jβ1, jα1+1), . . . , rd(is, jβs , jαs+1), rd(n, 0, r)

and the following fromBu:

ru(i1, jα1+1, jβ1), . . . , ru(is, jαs+1, jβs), ru(n, r , 0).

DNA computing, sticker systems, and universality 417

Let the result of the computationD bez. Clearly, by the definition ofg, g(z) = w.
It is also easy to see thated(D) = eu(D) by the definitions ofed andeu.

We now show that ifw ∈ g(Lc(γ)), thenw ∈ hT (h1(E(h1, h2)) ∩ R). We have
w ∈ g(z) for somez that is the result of a computationD of γ andeu(D) = ed(D).
By the construction of the sticker systemγ, one can observe thatz corresponds
to a sequence

qi0, a1, qi1, a2, . . . , qit−1, at , qit

whereqi0 = q0, qit ∈ F , andδ(qik−1, ak) = qik , for 1 ≤ k ≤ t . Then it is clear that
a1a2 . . . at ∈ R. By the definition ofBd andBu and the fact thateu(D) = ed(D),
it follows that a1a2 . . . at = h1(x) = h2(x) for somex ∈ Σ2. Denotea1a2 . . . at

by y. Then, y ∈ h1(E(h1, h2)) ∩ R. It is easy to show thatw = g(z) = hT (y).
Therefore,w ∈ hT (h1(E(h1, h2)) ∩ R). �

From Lemmas 6 and 7 we get

Theorem 2. RE = wcode(CSL).

6. An intermediate case

For the fair computations we have

Theorem 3. REG⊂ wcode(FSL) ⊂ RE.

Proof. The inclusionREG⊆ wcode(FSL) follows from the proof of Lemma 5.
For the strictness, let us consider the sticker system

γ = (V , ρ, A, Bd, Bu),

V = {a, a′, b, b′},

ρ = {(a, a′), (b, b′)},

A =
{(a

#

)}
,

Bd =

{(
#
a′

)
,

(
#
b′

)(
#
b′

)}
,

Bu =

{(a
#

)(a
#

)
,

(
b
#

)}
.

Starting with the unique axiom inA, we have to use

(
#
a′

)
from Bd and we

obtain a blunt sequence. We can continue with any string inBd andBu. However,
due to the complementarity restrictions, if a symbolb or b′ is introduced, then we

have to continue by using composite symbols

(
#
b′

)
and

(
b
#

)
until obtaining

again a blunt sequence.

Thus, let us intersect the languageLf (γ) with the regular language
(a

a′
)+

(
b
b′

)+

. We obtain a language consisting of strings of the form
(a

a′
)2n+1

(
b
b′

)2m

,

n, m ≥ 1, produced by computations where

418 L. Kari et al.

– the first string inBd is used 2n + 1 times,
– the second string inBd is usedm times,
– the first string inBu is usedn times (one occurrence ofa is introduced by

the axiom),
– the second string inBu is used 2m times.

Due to the fairness, we must have

2n + 1 + m = n + 2m,

which means that
n = m − 1.

The language{
(a

a′
)2m−1

(
b
b′

)2m

| m ≥ 1} is not a regular one, henceLf (γ) is

not regular.

From the Turing-Church thesis we havewcode(FSL) ⊆ RE. For the strict-
ness, we shall prove thatwcode(FSL) ⊆ MATλ, where MATλ is the family
of languages generated by context-free matrix grammars with arbitrary rules.
BecauseMATλ ⊂ RE ([6], [8]), we obtainwcode(FSL) ⊂ RE.

Consider a sticker systemγ = (V , ρ, A, Bd, Bu). Define

V ′ = {a′ | a ∈ V },

L(A) = {[a1, b′
1] . . . [ak , b′

k]ak+1 . . . ak+r | k, r ≥ 0, k + r ≥ 1,(
a1

b1

)
. . .

(
ak

bk

)(ak+1

#

)
. . .
(ak+r

#

)
∈ A}

∪ {[a1, b′
1] . . . [ak , b′

k]b′
k+1 . . . b′

k+r | k, r ≥ 0, k + r ≥ 1,(
a1

b1

)
. . .

(
ak

bk

)(
#

bk+1

)
. . .

(
#

bk+r

)
∈ A}

∪ {λ | λ ∈ A},

L(Bd) = {b′
1 . . . b′

k | k ≥ 1,

(
#
b1

)
. . .

(
#
bk

)
∈ Bd},

L(Bu) = {a1 . . . ak | k ≥ 1,
(a1

#

)
. . .
(ak

#

)
∈ Bu}.

Consider the new symbolss, d, d′ and construct the languages

L1 = {xd′ | x ∈ L(Bd)}+,

L2 = {xd | x ∈ L(Bu)}+,

L′
1 = L1 t⊥ c+,

L′
2 = L2 t⊥ c+,

L3 = (L(A)L′
1 t⊥ L′

2) ∩ {[a, b′] | a, b ∈ V }∗(VV ′ ∪ {cd′, dc})∗.

(t⊥ is the shuffle operation:x t⊥ y = {x1y1 . . . xnyn | n ≥ 1, x = x1 . . . xn,
y = y1 . . . yn, xi , yi ∈ V ∗, 1 ≤ i ≤ n}.)

DNA computing, sticker systems, and universality 419

Clearly, L1, L2 are regular languages, hence alsoL3 is regular: the family
REG is closed under the shuffle operation and under intersection.

Consider the gsmQ which:

– leaves unchanged the symbols [a, b′], a, b ∈ V ,
– replaces each pairab′ by [a, b′], a, b ∈ V ,
– replaces each paircd′ by [c, d′] and each pairdc by [d, c].

The languageQ(L3) is also regular, over the alphabet

U = {[a, b′] | a, b ∈ V } ∪ {[c, d′], [d, c]}.

Let G = (N , U , S, P) be a regular grammar forQ(L3) and construct the matrix
grammar

G′ = (N ′,
(

V
V

)
ρ

, S′, M),

where

N ′ = N ∪ U ∪ {S′},

M = {(S′ → S)} ∪ {(r) | r ∈ P}
∪ {([a, b′] →

(a
b

)
) | a, b ∈ V }

∪ {([c, d′] → λ, [d, c] → λ)}.

It is easy to see thatL(G′) contains all the stringsw ∈
(

V
V

)∗

ρ

such thatx =⇒∗ w

in γ, x ∈ A, and this is a fair derivation: the matrix ([c, d′] → λ, [d, c] → λ)
checks whether or not the number of symbolsd andd′ is the same.

The familyMATλ is closed under arbitrary morphisms ([5]), hence the image
by a weak coding ofLf (γ) is in the familyMATλ. �
Open problem.Is the familyFSL included in the family of context-free languages
(or even in the family of linear languages) ?

7. Final remarks

We have found characterizations of familiesREG and RE using variants of
sticker systems. Several further research directions are of interest:

• Define variants of sticker systems which characterize families of languages
different fromREG andRE.

• Look for universal sticker systems, in the sense of universal Turing machines.
This is important to the construction of universal andprogrammableDNA
sticker systems.

• Look for other variants which characterizeRE, but not using the coherence
restriction. This is again important to finding “realistic” models of DNA
computers based on the sticker operation.

420 L. Kari et al.

• Investigate the descriptional complexity (the size) of sticker systems and
languages. Several parameters are very natural: the number of axioms, the
length of the longest axiom, the number of elements in the setsBd, Bu, the
length of the longest string inBd, Bu, etc. Do these measures give infinite
hierarchies of sticker languages?

References

1. L. M. Adleman: Molecular computation of solutions to combinatorial problems, Science, 226
(Nov. 1994), 1021 – 1024.

2. L. M. Adleman: On constructing a molecular computer. In: R.J. Lipton, E.B. Baum (eds.) DNA
Based Computers, DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
27, American Math. Soc., 1996, 1 – 22.

3. E. Csuhaj-Varju, L. Freund, L. Kari, Gh. Păun: DNA computing based on splicing: universality
results, First Annual Pacific Symp. on Biocomputing, Hawaii, Jan. 1996.

4. K. Culik II: A purely homomorphic characterization of recursively enumerable sets, Journal of
the ACM 26 (1979) 345-350.

5. J. Dassow, Gh. P̆aun: Regulated Rewriting in Formal Language Theory. Berlin Heidelberg New
York: Springer, 1989.

6. J. Dassow, Gh. P̆aun, A. Salomaa: Grammars with controlled derivations. In: G. Rozenberg, A.
Salomaa (eds.) Handbook of Formal Languages. Berlin Heidelberg New York: Springer, 1997.

7. R. Freund, L. Kari, Gh. P̆aun: DNA computing based on splicing: The existence of universal
computers, Technical Report 185-2/FR-2/95, TU Wien, 1995.

8. D. Hauschild, M. Jantzen: Petri nets algorithms in the theory of matrix grammars, Acta Infor-
matica, 31 (1994), 719 – 728.

9. T. Head: Formal language theory and DNA: an analysis of the generative capacity of specific
recombinant behaviors, Bull. Math. Biology, 49 (1987), 737 – 759.

10. T. Head, Gh. P̆aun, D. Pixton: Language theory and molecular genetics. Generative mechanisms
suggested by DNA recombination. In: G. Rozenberg, A. Salomaa (eds.) Handbook of Formal
Languages. Berlin Heidelberg New York: Springer, 1997.

11. R. J. Lipton: Using DNA to solve NP-complete problems, Science, 268 (Apr. 1995), 542 – 545.
12. R. J. Lipton: Speeding up computations via molecular biology. In: R.J. Lipton, E.B. Baum (eds.)

DNA Based Computers, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 27, American Math. Soc., 1996, 67 – 74.

13. Gh. P̆aun: Splicing. A challenge to formal language theorists, Bulletin EATCS, 57 (1995), 183
– 194.

14. Gh. P̆aun: Regular extended H systems are computationally universal, J. Automata, Languages
and Combinatorics, 1, 1 (1996), 27 – 36.

15. Gh. P̆aun, G. Rozenberg, A. Salomaa: Computing by splicing, Theor. Computer Sci., 168 (1996),
321 – 336.

16. Gh. P̆aun, A. Salomaa: DNA computing based on the splicing operation, Mathematica Japonica,
43, 3 (1996), 607 – 632.

17. A. Salomaa: Formal Languages. New York, London: Academic Press, 1973.
18. A. Salomaa: Equality sets for homomorphisms of free monoids, Acta Cybernetica 4 (1978)

127-139.
19. A. Salomaa: Jewels of Formal Language Theory. Rockville, MD: Computer Science Press,

1981.

